中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 计算机科学国家重点实验室  > 会议论文
题名:
clustering via local regression
作者: Sun Jun ; Shen Zhiyong ; Li Hui ; Shen Yidong
会议文集: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
会议名称: European Conference on Principles of Data Mining and Knowledge Discovery
会议日期: SEP 15-19,
出版日期: 2008
会议地点: Antwerp, BELGIUM
关键词: Clustering ; Local Learning ; Sum of Absolute Error
出版者: MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS
出版地: HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
ISSN: 0302-9743
ISBN: 978-3-540-87480-5
部门归属: Sun, Jun; Shen, Zhiyong; Shen, Yidong Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 100190, Peoples R China.
主办者: Univ Antwerp, Computat Linguist Flanders, Google, hp, VADIS, COGNOS, European Off Aerosp, SPSS, textkernel, Data Mining & Knowledge Discovery, IBM, Machine Learning
英文摘要: This paper deals with the local learning approach for clustering, which is based on the idea that in a good clustering, the cluster label of each data point can be well predicted based on its neighbors and their cluster labels. We propose a no
内容类型: 会议论文
URI标识: http://ir.iscas.ac.cn/handle/311060/10704
Appears in Collections:计算机科学国家重点实验室 _会议论文

Files in This Item:
File Name/ File Size Content Type Version Access License
clustering via local regression.pdf(566KB)----限制开放-- 联系获取全文

Recommended Citation:
Sun Jun,Shen Zhiyong,Li Hui,et al. clustering via local regression[C]. 见:European Conference on Principles of Data Mining and Knowledge Discovery. Antwerp, BELGIUM. SEP 15-19,.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Sun Jun]'s Articles
[Shen Zhiyong]'s Articles
[Li Hui]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Sun Jun]‘s Articles
[Shen Zhiyong]‘s Articles
[Li Hui]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院软件研究所 - Feedback
Powered by CSpace