中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 会议论文
题名:
segmental semi-markov model based online series pattern detection under arbitrary time scaling
作者: Ling Guangjie ; Qian Yuntao ; Sen Jia
会议名称: 2nd International Conference on Advanced Data Mining and Applications
会议日期: AUG 14-16,
出版日期: 2006
会议地点: Xian, PEOPLES R CHINA
出版者: ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS
出版地: HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
收录类别: sci ; istp
ISSN: 0302-9743
ISBN: 3-540-37025-0
部门归属: Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China. Chinese Acad Sci, Inst Software, Beijing 100049, Peoples R China.
主办者: Xian Software Pk, Web Informat Syst Engn Soc, IEEE Queensland Sect, Univ Queensland
英文摘要: Efficient online detection of similar patterns under arbitrary time scaling of a given time sequence is a challenging problem in the real-time application field of time series data mining. Some methods based on sliding window have been propose
语种: 英语
内容类型: 会议论文
URI标识: http://ir.iscas.ac.cn/handle/311060/12144
Appears in Collections:软件所图书馆_会议论文

Files in This Item:
File Name/ File Size Content Type Version Access License
segmental semi-markov model based online series pattern detection under arbitrary time scaling.pdf(350KB)----限制开放-- 联系获取全文

Recommended Citation:
Ling Guangjie,Qian Yuntao,Sen Jia. segmental semi-markov model based online series pattern detection under arbitrary time scaling[C]. 见:2nd International Conference on Advanced Data Mining and Applications. Xian, PEOPLES R CHINA. AUG 14-16,.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Ling Guangjie]'s Articles
[Qian Yuntao]'s Articles
[Sen Jia]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Ling Guangjie]‘s Articles
[Qian Yuntao]‘s Articles
[Sen Jia]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院软件研究所 - Feedback
Powered by CSpace