中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 会议论文
题名:
cluster cores-based clustering for high dimensional data
作者: Shen YD ; Shen ZY ; Zhang SM ; Yang Q
会议名称: 4th IEEE International Conference on Data Mining
会议日期: NOV 01-04,
出版日期: 2004
会议地点: Brighton, ENGLAND
关键词: cluster cores-based clustering ; clustering algorithm ; curse of dimensionality ; high dimensional data ; semantics-based similarity measure ; time complexity ; computational complexity ; data mining
出版者: FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS
出版地: 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
收录类别: istp ; ieee
ISBN: 0-7695-2142-8
部门归属: Chinese Acad Sci, Inst Software, Comp Sci Lab, Beijing 100080, Peoples R China.
主办者: IEEE Comp Soc, TCCI, IEEE Comp Soc, TCPAMI, IBM Res, StatSoft Ltd, Web Intelligence Consortium
英文摘要: We propose a new approach to clustering high dimensional data based on a novel notion of cluster cores, instead of on nearest neighbors. A cluster core is a fairly dense group with a maximal number of pairwise similar objects. It represents th
语种: 英语
内容类型: 会议论文
URI标识: http://ir.iscas.ac.cn/handle/311060/12974
Appears in Collections:软件所图书馆_会议论文

Files in This Item:
File Name/ File Size Content Type Version Access License
10.1.1.162.2065.pdf(128KB)----限制开放-- 联系获取全文

Recommended Citation:
Shen YD,Shen ZY,Zhang SM,et al. cluster cores-based clustering for high dimensional data[C]. 见:4th IEEE International Conference on Data Mining. Brighton, ENGLAND. NOV 01-04,.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Shen YD]'s Articles
[Shen ZY]'s Articles
[Zhang SM]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Shen YD]‘s Articles
[Shen ZY]‘s Articles
[Zhang SM]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院软件研究所 - Feedback
Powered by CSpace