中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Subject: Computer Science
Title:
基于动态项集计数的加权频繁项集算法
Alternative Title: weighted frequent itemset algorithm based on dynamic itemset counting
Author: 秦丽君 ; 罗雄飞
Keyword: data mining ; weighted frequent itemset mining ; dynamic itemset counting ; weighted support degree ; weighted trie tree ; downward closure property ; maximum weight
Source: Computer Engineering
Issued Date: 2012
Volume: 38, Issue:3, Pages:31-33
Indexed Type: cscd,cnki,wanfang
Department: 秦丽君, 中国科学院软件研究所, 北京 100190, 中国. 罗雄飞, 中国科学院软件研究所, 北京 100190, 中国.
Abstract: 基于Apriori的加权频繁项集挖掘算法存在扫描数据集次数多的问题。为此,提出一种基于动态项集计数的加权频繁项集算法。该算法采用权值键树的数据结 构和动态项集计数的方法,满足向下闭合特性,并且动态生成候选频繁项集,从而减少扫描数据集的次数。实验结果证明,该算法生成的加权频繁项集具有较高的效 率和时间性能。
English Abstract: The existing weighted frequent itemset mining algorithms which are based on Apriori require multiple dataset scans.This paper proposes a weighted frequent itemset algorithm weighted frequent itemset mining based on dynamic itemset counting which uses the structure of weighted trie tree and the method of dynamic itemset counting.This algorithm satisfies the downward closure property and dynamically generates candidate frequent itemsets,thereby reduces the number of scanning datasets and improves the performance.Experimental results show that the proposed algorithm not only generates the weighted frequent itemsets,but also has high efficiency and time performance.
Language: 中文
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/14674
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
基于动态项集计数的加权频繁项集算法.pdf(259KB)----限制开放 联系获取全文

Recommended Citation:
秦丽君,罗雄飞. 基于动态项集计数的加权频繁项集算法[J]. Computer Engineering,2012-01-01,38(3):31-33.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[秦丽君]'s Articles
[罗雄飞]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[秦丽君]‘s Articles
[罗雄飞]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2020  中国科学院软件研究所 - Feedback
Powered by CSpace