中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Subject: Geology (provided by Thomson Reuters)
Title:
关键点检测的线要素综合算法
Alternative Title: algorithm of line generalization with key point detection
Author: 黄志坚 ; 张金芳 ; 徐帆江
Keyword: line generalization ; corner detection ; adaptive threshold ; key point detection ; Li-Openshaw algorithm
Source: 中国图象图形学报
Issued Date: 2012
Volume: 17, Issue:2, Pages:241-248
Indexed Type: cnki,wanfang,cscd
Department: 国防科技大学电子科学与工程学院空间信息技术研究所;中国科学院软件研究所综合信息系统技术国家级重点实验室;
Abstract: 提出一种基于关键点检测的线要素自动综合算法。利用角点检测器检测出所有角点,并从中筛选出关键点作为必须保留的点,以保证线要素的基本形态得到保持;线要素在关键点处分段后,各段分别采用Li-Openshaw算法进行综合。实验结果表明,该算法较传统算法能够更好地保持线要素的形状特征,且具有更高的位置精度。
English Abstract: A new automatic algorithm for line generalization based on key point detection is presented in this paper.An adaptive threshold corner detector is used to detect all corner points,from which key points are selected.To keep the shape characteristic of lines,all key points must be reserved.For the segmented lines at these key points,each sub-line is generalized with the Li-Openshaw algorithm.Compared with conventional algorithms,the results of our experiments show that the shape of lines is better preserved and the positions are more accurate.
Language: 中文
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/14685
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
关键点检测的线要素综合算法.pdf(1364KB)----限制开放 联系获取全文

Recommended Citation:
黄志坚,张金芳,徐帆江. 关键点检测的线要素综合算法[J]. 中国图象图形学报,2012-01-01,17(2):241-248.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[黄志坚]'s Articles
[张金芳]'s Articles
[徐帆江]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[黄志坚]‘s Articles
[张金芳]‘s Articles
[徐帆江]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace