中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Subject: Computer Science (provided by Thomson Reuters)
Title:
基于KFD指标聚类的高隐蔽性JPEG隐写分析
Alternative Title: steganalysis based on clustering via kfd index against highly undetectable jpeg steganography
Author: 黄炜 ; 赵险峰 ; 盛任农
Keyword: 核Fisher鉴别指标 ; 聚类分析 ; 隐写分析 ; 类内方差
Source: 计算机学报
Issued Date: 2012
Volume: 35, Issue:9, Pages:1951-1958
Indexed Type: CNKI ; EI ; WANFANG ; CSCD
Department: 中国科学院软件研究所;中国科学院信息工程研究所信息安全国家重点实验室;北京电子技术应用研究所;
Sponsorship: 国家自然科学基金(61170281)|北京市自然科学基金(4112063)|中国科学院战略性先导专项课题(XDA06030601)|中国科学院信息工程研究所创新课题(Y1Z0041101,Y1Z0051101)资助
Abstract: 采用非公开的图像源或算法的隐写行为具有很强的隐蔽性.在这类对隐写者先验不足的场景下聚类分析更为实用.Ker等人比较不同指标不同配置之后,提出基于MMD指标聚类的隐写者识别方法.然而该方法所用MMD指标只考虑两个类样本中心之间的距离,忽略了样本相对中心点的聚合程度对可分性的影响,因而准确率存在提高的空间.为进一步提高现有隐写聚类分析方法的准确率,该文提出用核Fisher鉴别(KFD)指标计算样本间差异度量的聚类方法.首先,提取PEV274校准特征并归一化.然后,计算KFD指标组成距离矩阵.最后,根据样本间差异度量矩阵按重心法自底向上进行层次聚类分析.KFD指标兼顾与最大平均距离(MMD)原理相近的类间方差以及指示样本聚集程度的类内方差,更准确地估算样本间差异.实验结果表明,该文对低嵌入率隐写其准确率最高提高约30%,对高嵌入率准确率降低不超过5%.该文的创新点在于提出了一种更合理的指标和基于该指标聚类隐写分析的方法,比现有方法平均准确率有一定的提高.
English Abstract: It is highly undetectable of steganographers who avoid utilizing public sources of images or steganographic schemes. In such scenario where steganalysers have little priori knowledge about steganographers, clustering is more practical. Ker proposed a MMD-based clustering scheme to distinguish steganographers from innocent actors after comparisons in various configurations and indexes. MMD merely considers the distance between centers of samples from two classes, but ignores the fact that aggregation how samples gather around their centers does affect the separability. Hence, its accuracy needs improvement. To increase the detecting rate further, we propose a clustering based steganalytic scheme using kernel Fisher discriminant indexes (KFDI) as the dissimilarities of samples. We firstly extract the calibration features PEV274 and have them normalized. Then, we calculate the KFD indexes between samples to form the distance matrix. Finally, hierarchical clustering is proceeded with bottom-up iteration where we used the center of gravity as the center for the new gathered clusters. KFDI considers not only between-class variances that maximum mean discrepancy concentrates on, but also within-class variance that affects the aggregation between classes. Experimental results show that our scheme obtains a high increase in accuracy under low embedding rates, about 30% at most, but a little decrease of no more than 5% under high embedding rates. The key contribution of this paper is to propose a more reasonable indicators and steganalytic method based on the KFDI, and we raised the average accuracy of existing methods.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/14974
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
黄炜,赵险峰,盛任农. 基于KFD指标聚类的高隐蔽性JPEG隐写分析[J]. 计算机学报,2012-01-01,35(9):1951-1958.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[黄炜]'s Articles
[赵险峰]'s Articles
[盛任农]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[黄炜]‘s Articles
[赵险峰]‘s Articles
[盛任农]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace