中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
online anomaly detection approach for web applications with workload pattern recognition
Author: Wang Tao ; Wei Jun ; Zhang Wen-Bo ; Zhong Hua
Keyword: Web应用 ; 异常检测 ; 动态负载 ; 增量式聚类 ; 局部异常因数
Source: Ruan Jian Xue Bao/Journal of Software
Issued Date: 2012
Volume: 23, Issue:10, Pages:2705-2719
Indexed Type: EI ; CNKI
Department: (1) Technology Center of Software Engineering Institute of Software The Chinese Academy of Sciences Beijing 100190 China; (2) State Key Laboratory of Computer Science Institute of Software The Chinese Academy of Sciences Beijing 100190 China; (3) Graduate University The Chinese Academy of Sciences Beijing 100049 China
Sponsorship: 国家自然科学基金(61173004)|国家重点基础研究发展计划(973)(2009CB320704)|“核高基”国家科技重大专项(2011ZX03002-002-01)
Abstract: 负载模式的动态变化会影响系统度量,使得异常难以准确检测.针对此问题,提出一种基于负载模式识别、在线检测Web应用异常的方法.该方法基于在线增量式聚类算法,运行时识别动态变化的负载模式,根据特定负载模式对应的度量空间,利用局部异常因数检测异常状态,并量化异常程度,并通过学生t测试方法计算度量异常值,以定位异常原因.实验结果表明,所提方法能够准确识别负载模式变化,有效检测出Web应用典型错误所引起的异常状态,并定位异常原因.
English Abstract: The dynamic fluctuation of workload influences system metrics, affects the precision of anomaly detection. This paper proposes an online anomaly detection approach for Web applications, which handles workload fluctuation in both request pattern and volume. The study proposes an incremental clustering algorithm to recognize online workload patterns automatically. For a specific workload pattern, the study adopts local outlier factor to detect anomaly and qualify the anomaly degree, and then locate the abnormal metrics with a student's t-test method. The experimental results show that the clustering algorithm can accurately capture workload fluctuations in a typical Web application, and demonstrate that the approach is capable of not only detecting the typical faults in Web applications, but also locating the abnormal metrics. © 2012 ISCAS.
Language: 中文
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/15145
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Wang Tao,Wei Jun,Zhang Wen-Bo,et al. online anomaly detection approach for web applications with workload pattern recognition[J]. Ruan Jian Xue Bao/Journal of Software,2012-01-01,23(10):2705-2719.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Wang Tao]'s Articles
[Wei Jun]'s Articles
[Zhang Wen-Bo]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Wang Tao]‘s Articles
[Wei Jun]‘s Articles
[Zhang Wen-Bo]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2020  中国科学院软件研究所 - Feedback
Powered by CSpace