中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Subject: Computer Science (provided by Thomson Reuters)
Title:
受限路网中基于全局学习机制的在线轨迹预测
Alternative Title: network-constrained on-line path prediction based on global learning mechanism
Author: 徐怀野 ; 丁治明 ; 刘奎恩 ; 许佳捷
Keyword: 受限路网 ; 移动对象 ; 在线轨迹预测 ; 全局学习机制
Source: 计算机科学
Issued Date: 2012
Volume: 39, Issue:8, Pages:169-172
Indexed Type: WANFANG ; CNKI ; CSCD
Department: 中国科学院软件研究所 北京100190;中国科学院研究生院 北京100049 中国科学院软件研究所 北京100190
Sponsorship: 国家自然科学基金项目(60970030)|教育部留学回国人员科研启动基金项目(外教司[2006J331])资助
Abstract: 受限路网中移动对象的轨迹预测已成为智能交通关注的热点,被广泛应用于应急保障、车辆导航等领域.但在仅知道移动对象近期轨迹的情况下,现有方法难以解决其未来路径的在线预测问题.提出一种新的在线轨迹预测方法LPP,即通过全局学习机制发现最长频繁路径,构造快速访问结构LPP-tree.基于移动对象近期轨迹可对未来运动路径进行快速在线预测.通过实验,验证了该方法的有效性.
English Abstract: The trajectory prediction of the moving object in the network-constrained has been the hot spot of the intelligent traffics attention.And it has been widely used in the area of emergency security,GPS and so on.But if we only know the recent trajectory of the moving object,we couldnt predict its future trajectory with the existing methods.A trajectory predictions method LPP(longest frequent path prediction) was put forward,which could construct the fast accessing structure LPP-tree through the global learning mechanism to find out the longest frequent trajectory.Based on the recent trajectory of the moving object,one could predict its future trajectory swiftly online.And the experiment proves the validity of this method.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/15320
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
徐怀野,丁治明,刘奎恩,等. 受限路网中基于全局学习机制的在线轨迹预测[J]. 计算机科学,2012-01-01,39(8):169-172.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[徐怀野]'s Articles
[丁治明]'s Articles
[刘奎恩]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[徐怀野]‘s Articles
[丁治明]‘s Articles
[刘奎恩]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2020  中国科学院软件研究所 - Feedback
Powered by CSpace