中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Subject: Computer Science (provided by Thomson Reuters)
Title:
基于关联挖掘的软件错误定位方法
Alternative Title: mining associations to improve the effectiveness of fault localization
Author: 赵磊 ; 王丽娜 ; 高东明 ; 张震宇 ; 熊作婷
Keyword: 软件调试 ; 错误定位 ; 关联挖掘 ; 覆盖向量 ; 频繁集
Source: 计算机学报
Issued Date: 2012
Volume: 35, Issue:12, Pages:2528-2540
Indexed Type: CNKI ; CSCD ; WANFANG
Department: 武汉大学空天信息安全与可信计算教育部重点实验室;武汉大学计算机学院;中国科学院软件研究所计算机科学国家重点实验室;
Sponsorship: 国家自然科学基金(90718006,60970114,61003027,61073006)|教育部博士研究生学术新人项目资助
Abstract: 基于覆盖率的错误定位(Coverage Based Fault Localization,CBFL)方法旨在通过分析程序执行的结果预测错误信息,是一种行之有效的错误定位方法.然而,CBFL方法中代码覆盖率的独立统计忽略了程序内存在的复杂控制依赖和数据依赖,从而忽视了语句间的语义关系,影响错误定位的准确性.该文借助实例重点分析了基于代码覆盖率所得到的错误可疑度与错误代码的表现关系,指出现有CBFL方法的不足是片面地将基于覆盖率的错误可疑度直接作为错误代码判定的依据;提出程序失效规则及基于覆盖向量的覆盖信息分析模型,并在此模型基础之上,指出高可疑代码与错误代码在执行路径上的覆盖一致性,进而提出用以挖掘与高可疑代码相关联的错误代码的频繁集求解方法.以SIR基准程序为实验对象建立的受控实验结果表明,相比之前的研究,文中方法在一定程度上能够改进错误定位结果.
English Abstract: Coverage-based fault localization (CBFL) techniques find the fault-related positions in programs by comparing the execution statistics of passed executions and failed executions have been proven to be efficient by several empirical studies. However, these techniques assess the suspiciousness of program entities individually, whereas the individual coverage information cannot reflect the complicated control- and data-dependency relationships, and thus oversimplify the execution spectra. In this paper, we first use motivating examples to show the impact of the cause-effect relationship on the effectiveness of CBFL. Second, we propose the rules of program failures and design the execution analysis model based on the coverage of different program execution spectrum. By computing the frequency items for statements with high suspiciousness, we also bring out the coverage vector to mine fault-prone statements. The controlled experiments based on the SIR benchmarks indicate that our technique is promising.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/15365
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
赵磊,王丽娜,高东明,等. 基于关联挖掘的软件错误定位方法[J]. 计算机学报,2012-01-01,35(12):2528-2540.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[赵磊]'s Articles
[王丽娜]'s Articles
[高东明]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[赵磊]‘s Articles
[王丽娜]‘s Articles
[高东明]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace