中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Subject: Automation & Control Systems
Title:
基于二部图的控制系统故障诊断方法
Alternative Title: fault diagnosis method of control system based on bipartite graph
Author: 王欢 ; 郑刚
Keyword: 控制系统 ; 故障诊断 ; 二部图 ; 匹配 ; 关联矩阵
Source: 计算机工程与设计
Issued Date: 2011
Volume: 32, Issue:12, Pages:4068-4070,4099
Indexed Type: CNKI ; CSCD ; WANFANG
Department: 中国科学院软件研究所综合信息系统技术国家级重点实验室;中国科学院研究生院;
Sponsorship: 中国科学院科技创新基金项目(CXJJ-10-M20)
Abstract: 针对连续控制系统,建立了由系统约束集、变量集和边集构成的二部图模型,提出了一种定性描述与定量分析相结合的故障诊断算法。该算法通过分离子系统,求解系统的关联矩阵及最大匹配,定义了描述变量与系统约束之间依赖关系的规则,并设计了关联矩阵分层算法,以此来计算控制系统残差。以一个线性系统为例,探讨了该算法的应用过程,并通过仿真实例验证了该算法的有效性。
English Abstract: After establishing a general fault diagnosis model based on bi-partite graphs, a fault diagnosis method combined qualitative description and quantitative analysis is proposed for continuous control systems. To obtain the reduced associated matrix and its maximum mathing, system composed of known variables is detached; And to calculate residuals for diagnosis, rules about relations between system faults and residuals from the bi-partite graph method are proposed, and the associated matrix's layering algorithms are also proposed. Finally, a simulation instance is proposed to discuss the method and validate its result.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16111
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
王欢,郑刚. 基于二部图的控制系统故障诊断方法[J]. 计算机工程与设计,2011-01-01,32(12):4068-4070,4099.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[王欢]'s Articles
[郑刚]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[王欢]‘s Articles
[郑刚]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2021  中国科学院软件研究所 - Feedback
Powered by CSpace