中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
大数据可视分析综述
Alternative Title: Visual analytics towards big data
Author: 任磊 ; 杜一 ; 马帅 ; 张小龙 ; 戴国忠
Corresponding Author: Ren, Lei
Keyword: 大数据 ; 可视化 ; 信息可视化 ; 可视分析 ; 人机交互 ; 云计算 ; big data ; visualization ; information visualization ; visual analytics ; human-computer interaction ; cloud computing
Source: 软件学报
Issued Date: 2014
Volume: 25, Issue:9, Pages:1909-1936
Indexed Type: EI ; CSCD
Department: 北京航空航天大学 自动化科学与电气工程学院,北京,100191 中国科学院 计算机网络信息中心 科学数据中心,北京,100190 北京航空航天大学 计算机学院,北京,100191 College of Information Sciences and Technology,Pennsylvania State University,USA 人机交互北京市重点实验室 中国科学院 软件研究所,北京,100190
Abstract: 可视分析是大数据分析的重要方法。大数据可视分析旨在利用计算机自动化分析能力的同时,充分挖掘人对于可视化信息的认知能力优势,将人、机的各自强项进行有机融合,借助人机交互式分析方法和交互技术,辅助人们更为直观和高效地洞悉大数据背后的信息、知识与智慧。主要从可视分析领域所强调的认知、可视化、人机交互的综合视角出发,分析了支持大数据可视分析的基础理论,包括支持分析过程的认知理论、信息可视化理论、人机交互与用户界面理论。在此基础上,讨论了面向大数据主流应用的信息可视化技术--面向文本、网络(图)、时空、多维的可视化技术。同时探讨了支持可视分析的人机交互技术,包括支持可视分析过程的界面隐喻与交互组件、多尺度/多焦点/多侧面交互技术、面向 Post-WIMP 的自然交互技术。最后,指出了大数据可视分析领域面临的瓶颈问题与技术挑战。 Visual analytics is an important method used in big data analysis. The aim of big data visual analytics is to take advantage of human’s cognitive abilities in visualizing information while utilizing computer’s capability in automatic analysis. By combining the advantages of both human and computers, along with interactive analysis methods and interaction techniques, big data visual analytics can help people to understand the information, knowledge and wisdom behind big data directly and effectively. This article emphasizes on the cognition, visualization and human computer interaction. It first analyzes the basic theories, including cognition theory, information theory, interaction theory and user interface theory. Based on the analysis, the paper discusses the information visualization techniques used in mainstream applications of big data, such as text visualization techniques, network visualization techniques, spatio-temporal visualization techniques and multi-dimensional visualization techniques. In addition, it reviews the interaction techniques supporting visual analytics, including interface metaphors and interaction components, multi-scale/multi-focus/multi-facet interaction techniques, and natural interaction techniques faced on Post-WIMP. Finally, it discusses the bottleneck problems and technical challenges of big data visual analytics.
English Abstract: Visual analytics is an important method used in big data analysis. The aim of big data visual analytics is to take advantage of human's cognitive abilities in visualizing information while utilizing computer's capability in automatic analysis. By combining the advantages of both human and computers, along with interactive analysis methods and interaction techniques, big data visual analytics can help people to understand the information, knowledge and wisdom behind big data directly and effectively. This article emphasizes on the cognition, visualization and human computer interaction. It first analyzes the basic theories, including cognition theory, information theory, interaction theory and user interface theory. Based on the analysis, the paper discusses the information visualization techniques used in mainstream applications of big data, such as text visualization techniques, network visualization techniques, spatio-temporal visualization techniques and multi-dimensional visualization techniques. In addition, it reviews the interaction techniques supporting visual analytics, including interface metaphors and interaction components, multi-scale/multi-focus/multi-facet interaction techniques, and natural interaction techniques faced on Post-WIMP. Finally, it discusses the bottleneck problems and technical challenges of big data visual analytics.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16707
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
任磊,杜一,马帅,等. 大数据可视分析综述[J]. 软件学报,2014-01-01,25(9):1909-1936.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[任磊]'s Articles
[杜一]'s Articles
[马帅]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[任磊]‘s Articles
[杜一]‘s Articles
[马帅]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace