中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
改进的流不敏感的类型限定词推断
Alternative Title: Improved Flow-insensitive Type Qualifier Inference
Author: 李慧松 ; 许智武 ; 陈海明
Keyword: 类型转化 ; 类型推断 ; 限定词 ; 流不敏感 ; 联合类型 ; Type casts ; Type inference ; Qualifiers ; Flow insensitive ; Union types
Source: 计算机科学
Issued Date: 2014
Volume: 41, Issue:9, Pages:178-184
Indexed Type: CSCD
Department: 中国科学院软件研究所计算机科学国家重点实验室 北京100190;中国科学院大学 北京100049 中国科学院软件研究所计算机科学国家重点实验室 北京100190
Abstract: 类型限定词可以精化标准类型,提高类型系统的表达能力.流不敏感的类型限定词推断已被用于CQual架构,以提高C程序的质量.然而,类型转化会影响类型限定词推断的有效性.首先,展示了一种允许类型转化的程序语言和流不敏感的限定词推断系统;其次,提出了变量参与的限定词推断系统,引入了联合类型并给出约束求解算法;最后,证明了推断的正确性并展示了一些实例运行结果.
English Abstract: Type qualifiers can refine the standard types and improve the expressivity of type systems.Flow-insensitive type qualifier inference has been used in the CQual framework to improve the quality of C programs.Type casts,however,will affect the effectiveness of type qualifier inference.First a language allowing type casts and its flow-insensitive qualifier inference system were presented. Then this paper proposed a variable-involved inference system,introduced union types and given constraints solving algorithm.Finally,the soundness was proved and some case studies were pre-sented.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16714
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
李慧松,许智武,陈海明. 改进的流不敏感的类型限定词推断[J]. 计算机科学,2014-01-01,41(9):178-184.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[李慧松]'s Articles
[许智武]'s Articles
[陈海明]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[李慧松]‘s Articles
[许智武]‘s Articles
[陈海明]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2020  中国科学院软件研究所 - Feedback
Powered by CSpace