中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
面向按需供给的资源需求滤波估算方法
Alternative Title: Filter based resource demand estimation for on-demand provision
Author: 黄翔 ; 陈伟 ; 宋云奎 ; 陈志刚
Corresponding Author: Huang, X.(huangxiang@gedi.com.cn)
Keyword: 按需供给 ; 资源需求 ; 滤波 ; 估算 ; On demand ; resource demand ; filter ; estimation
Source: 自动化学报
Issued Date: 2014
Volume: 40, Issue:5, Pages:942-951
Indexed Type: EI ; CSCD
Department: 中国能源建设集团广东省电力设计研究院 广州 510663; 中山大学信息科学与技术学院 广州510006 中国科学院软件研究所 北京 100190 中国能源建设集团广东省电力设计研究院 广州 510663
Abstract: 随着按需供给资源使用模式的推广,软件的资源需求已成为资源优化控制的重要属性。监测和估算是目前常用的资源消耗获取方法,但监测工具难以在运行时准确度量短任务的资源需求,回归分析方法又因受到多元共线性和不确定性因素的影响,导致其取值精度下降。本文提出了一种基于Kalman滤波的资源需求估算方法。该方法建立了可度量属性集与不可度量的资源需求间的关联,并利用滤波过滤度量过程中的噪声,达到降低估算误差的目的。基准测试的结果表明,通过合理的设置滤波参数,本方法能够快速逼近真实值,且平均误差小于8%。 As the development of demand resource provision, resource demands of software is becoming one of the most important attributes of resource management. Measurement and estimation are widely used in fetching the demands. However, it is hard to measure the short job0s resource demands by current measurement tools, and the regression methods suffer from the well-studied problem of multicollinearity. Therefore, the estimated results are not confident. In order to improve the estimation precision, we propose a Kalman filter based approach, which can predict the unobservable attribute by observable attributes, and filter the noise existing in the measurement. At last, we test our approach with a benchmark and compare the relative errors, which can demonstrate that with the reasonable parameters, our approach can get close to the real demands quickly, and get the estimated value with the mean error less than 8%.
English Abstract: As the development of demand resource provision, resource demands of software is becoming one of the most important attributes of resource management. Measurement and estimation are widely used in fetching the demands. However, it is hard to measure the short job's resource demands by current measurement tools, and the regression methods suffer from the well-studied problem of multicollinearity. Therefore, the estimated results are not confident. In order to improve the estimation precision, we propose a Kalman filter based approach, which can predict the unobservable attribute by observable attributes, and filter the noise existing in the measurement. At last, we test our approach with a benchmark and compare the relative errors, which can demonstrate that with the reasonable parameters, our approach can get close to the real demands quickly, and get the estimated value with the mean error less than 8%. Copyright © 2014 Acta Automatica Sinica. All rights reserved.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16745
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
黄翔,陈伟,宋云奎,等. 面向按需供给的资源需求滤波估算方法[J]. 自动化学报,2014-01-01,40(5):942-951.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[黄翔]'s Articles
[陈伟]'s Articles
[宋云奎]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[黄翔]‘s Articles
[陈伟]‘s Articles
[宋云奎]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace