中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
基于粒子群优化的测试数据生成及其实证分析
Alternative Title: Algorithm design and empirical analysis for particle swarm optimization-based test data generation
Author: 毛澄映 ; 喻新欣 ; 薛云志
Corresponding Author: Mao, C.(maochy@yeah.net)
Keyword: 结构性测试 ; 测试数据生成 ; 分支覆盖 ; 搜索算法 ; 粒子群优化 ; structural testing ; test data generation ; branch coverage ; searching algorithm ; particle swarm optimization (PSO)
Source: 计算机研究与发展
Issued Date: 2014
Volume: 51, Issue:4, Pages:824-837
Indexed Type: EI ; CSCD
Department: 软件工程国家重点实验室(武汉大学) 武汉430072;江西财经大学软件与通信工程学院 南昌 330032 江西财经大学软件与通信工程学院 南昌 330032 中国科学院软件研究所基础软件国家工程研究中心 北京 100190
Abstract: 运用元启发式搜索进行结构性测试数据生成已经被证实是一种有效的方法.在讨论基于搜索的测试数据生成基本框架的基础上,以分支覆盖作为测试覆盖准则,给出了基于粒子群优化(particle swarm optimization,PSO)的测试数据生成算法,并通过分析分支谓词的结构特征提出了一种新的适应函数构造形式.在此基础上,针对一些公开的程序集开展对比性实验分析,证实粒子群优化算法在平均覆盖率、全覆盖成功率、平均收敛代数和搜索时间4项指标上均要优于遗传算法和模拟退火算法.同时,编程实现了4种典型的PSO变体算法并进行测试数据生成效果的实证分析,结果表明:基本PSO是解决测试数据生成问题的首选算法,而综合学习式PSO算法的表现则相对较差.
English Abstract: How to generate a test dataset with high coverage and strong fault-revealing ability is a difficult problem, especially for software structural testing. Recently, meta-heuristic search has been confirmed to be an effective way to generate structural test data. In the paper, a swarm intelligence-based method is proposed to handle this problem. At first, the basic framework for search-based test data generation is discussed. Then, with regard to branch coverage criterion, the algorithm for generating test data based on particle swarm optimization (PSO) is proposed. Meanwhile, a new way to construct fitness function is defined according to the structure analysis for branch predicates in program under test. Subsequently, ten open published programs are used to perform experimental evaluation. The experimental results show that PSO outperforms genetic algorithm (GA) and simulated annealing (SA) in all four metrics, i.e., average coverage, success rate, average convergence generation and average time. In addition, other four PSO variant algorithms are also introduced and implemented to conduct comparison analysis with the basic PSO. The results indicate that the basic PSO is the most suitable algorithm for test data generation problem. On the contrary, comprehensive learning PSO (CLPSO) exhibits the worst performance in all variant algorithms.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16759
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
毛澄映,喻新欣,薛云志. 基于粒子群优化的测试数据生成及其实证分析[J]. 计算机研究与发展,2014-01-01,51(4):824-837.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[毛澄映]'s Articles
[喻新欣]'s Articles
[薛云志]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[毛澄映]‘s Articles
[喻新欣]‘s Articles
[薛云志]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace