中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
基于小样本学习的3D 动态视觉手势个性化交互方法
Alternative Title: Personalized Interaction Techniques of Vision-Based 3D Dynamic Gestures Based on Small Sample Learning
Author: 武汇岳 ; 王建民 ; 戴国忠
Keyword: 人机交互 ; 视觉手势 ; 小样本学习 ; 个性化交互 ; human-computer interaction ; vision-based gestures ; small sample learning ; personalized interaction
Source: 电子学报
Issued Date: 2013
Volume: 41, Issue:11, Pages:2230-2236
Indexed Type: CSCD
Department: 中山大学传播与设计学院,广东广州,510006 中国科学院软件研究所人机交互与智能信息处理实验室,北京,100190
Abstract: 传统的动态手势交互技术如隐马尔科夫模型、神经网络和统计分类器等都需要大量的训练样本,建模过程中需要领域专家的干预、对普通用户来说使用起来较为困难,并且它们针对的是特定的手势集合,很难对其进行扩展。本文通过WOZ实验,分析了用户的行为特征并给出了基于手势的数字电视交互任务模型;提出了3D动态手势状态转移模型,解决了Midas Touch问题;提出了一种基于小样本学习的动态手势识别方法,解决了传统手势识别方法的缺点;构建了个性化手势设计平台,满足了用户的个性化定制需求;实验评估结果验证了本文方法的有效性。 There are some unresolved issues left behind for many traditional dynamic gesture recognition methods ,such as Hidden Markov Model(HMM) ,Neural Network(NN) ,and statistical classifiers .For example ,they require a large number of train-ing examples and the involvement of expert users in the training process .Moreover ,they are used for some specific gesture sets which are difficult to be extended .In this paper ,we first build a task model and a state transition model for vision-based dynamic gestures .Then we propose a method for 3D dynamic gesture recognition based on small sample learning .Next we design a toolkit for development of user-defined gestures .Finally ,we develop a gesture-based interactive television prototype .Experimental results verify the validity of our method .
English Abstract: There are some unresolved issues left behind for many traditional dynamic gesture recognition methods, such as Hidden Markov Model(HMM), Neural Network(NN), and statistical classifiers. For example, they require a large number of training examples and the involvement of expert users in the training process. Moreover, they are used for some specific gesture sets which are difficult to be extended. In this paper, we first build a task model and a state transition model for vision-based dynamic gestures. Then we propose a method for 3D dynamic gesture recognition based on small sample learning. Next we design a toolkit for development of user-defined gestures. Finally, we develop a gesture-based interactive television prototype. Experimental results verify the validity of our method.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16781
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
武汇岳,王建民,戴国忠. 基于小样本学习的3D 动态视觉手势个性化交互方法[J]. 电子学报,2013-01-01,41(11):2230-2236.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[武汇岳]'s Articles
[王建民]'s Articles
[戴国忠]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[武汇岳]‘s Articles
[王建民]‘s Articles
[戴国忠]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace