中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
基于神经网络的DDoS防护绩效评估
Alternative Title: Artificial-Neural-Network-Based DDoS Defense Effectiveness Evaluation
Author: 黄亮 ; 冯登国 ; 连一峰 ; 陈恺
Keyword: 安全评估 ; 人工神经网络 ; 分布式拒绝服务 ; 绩效评估
Source: 计算机研究与发展
Issued Date: 2013
Volume: 50, Issue:10, Pages:2100-2108
Indexed Type: CSCD
Department: 黄亮, 可信计算与信息保障实验室(中国科学院软件研究所), 北京 100190, 中国. 冯登国, 可信计算与信息保障实验室(中国科学院软件研究所), 北京 100190, 中国. 连一峰, 可信计算与信息保障实验室(中国科学院软件研究所), 北京 100190, 中国. 陈恺, 可信计算与信息保障实验室(中国科学院软件研究所), 北京 100190, 中国.
Abstract: 面对日益严重的分布式拒绝服务(distributed denial of service, DDoS)攻击威胁和众多防护措施,需要防护绩效评估方法指导防护措施的选择.现有绩效评估方法通过对比防护措施部署前后的攻击效果进行评估,需对防护措 施进行卸载及重新部署,实施成本高.针对这种不足,首先建立了防护绩效评估模型(defence evaluation model, DEM),该模型从用户感受角度进行指标选取,减少了传统方式下测评过程需要的指标数量,降低了数据获取的难度.利用神经网络良好的泛化能力,将其引入D DoS防护绩效评估过程;在计算已部署防护措施攻击效果的同时,预测得到未部署防护措施时的攻击效果,减少了测量次数.使用网络仿真程序SSFNet模拟 典型攻击场景进行实验,验证了提出的评估方法以及神经网络的预测能力.
English Abstract: In the world facing severe threat of DDoS, finding the best countermeasure will raise the chance of survival. Defense effectiveness evaluation could help determining the best, thus it is an important part of countermeasure selecting. Current existing defense effectiveness evaluation works through comparing the attack effect before and after the deployment of defensive measures. Consequently, if the measure to be evaluated has been deployed, it needs to be removed, and then to be deployed again during the evaluation process. As a result, the cost of defense effectiveness evaluation is high. The cost can be reduced if the evaluation don't have to remove the defensive measure. In this paper, a defense effectiveness evaluation method without removing the defensive measure is proposed. Firstly, the DEM (defense effectiveness model) model is presented. It chooses indices in the perspective of normal user, which reduces the number of indices and the difficulty of measuring. Then, joined with artificial neural network, the DEM model is able to predict the attack effect before the deployment of countermeasures while the countermeasure has bean already deployed. After that, SSFNet, a network simulator, is incorporated to simulate a typical DDoS attack scenario. The result of the simulation not only validates the predictive ability of artificial neural network in DEM model, but also proves the proposed method to be correct.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16825
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
黄亮,冯登国,连一峰,等. 基于神经网络的DDoS防护绩效评估[J]. 计算机研究与发展,2013-01-01,50(10):2100-2108.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[黄亮]'s Articles
[冯登国]'s Articles
[连一峰]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[黄亮]‘s Articles
[冯登国]‘s Articles
[连一峰]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2020  中国科学院软件研究所 - Feedback
Powered by CSpace