中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
基于OpenCL的图像重映射算法优化研究
Alternative Title: Research on Image Remap Algorithm Optimization Based on OpenCL
Author: 吴再龙 ; 张云泉 ; 龙国平 ; 徐建良 ; 贾海鹏
Keyword: OpenCL ; 通用计算 ; 图像重映射算法 ; 跨平台 ; OpenCL ; Parallel computing ; Image remap ; Cross-platform
Source: 科研信息化技术与应用
Issued Date: 2013
Issue: 1, Pages:57-66
Department: 中国海洋大学 信息科学与工程学院,山东 青岛 266100; 中国科学院软件研究所 并行软件与计算科学实验室,北京 100190 中国科学院软件研究所 并行软件与计算科学实验室,北京 100190; 中国科学院软件研究所 计算机科学国家重点实验室,北京 100190 中国科学院软件研究所 并行软件与计算科学实验室,北京,100190 中国海洋大学 信息科学与工程学院,山东 青岛,266100
Abstract: 图像重映射(Remap)算法是典型的图像变化算法。在图像放缩、扭曲、旋转等领域有着广泛的应用。随着图片规模和分辨率的不断提高,对图形映射算法的性能提出了越来越高的要求。本文在充分考虑不同GPU平台硬件体系结构差异的基础上,系统研究了在OpenCL框架下图像映射(Remap)算法在不同GPU平台上的高效实现方式。并从片外内存访存优化,向量化计算,减少动态指令等多个优化角度考察了不同优化方法在不同GPU平台上对性能的影响,提出了在不同GPU平台间实现性能移植的可能性。实验结果表明,优化后的算法在不考虑数据传输时间的前提下,在AMD HD5850 GPU上相对于CPU版本取得114.3~491.5倍的加速比,相对于CUDA版本(现有GPU算法的实现)得到1.01~1.86的加速比,在NIVIDIA C2050 GPU上相对CPU版本取得100.7~369.8倍的加速比,相对于CUDA版本得到0.95~1.58的加速比。有效验证了本文提出的优化方法的有效性和性能可移植性。 As a typical algorithm for image transformation, remap algorithm is widely used in image zooming, warping, rotating and some others. With continuous increase of image’s scale and resolution, higher performance of graphic mapping algorithm has been more and more demanded. Taking full account of the differences of the hardware architectures on different GPU platforms, it is systematically studied in this paper that how remap algorithm based on OpenCL can run effectively on different GPU platforms. By applying memory access optimization of global memory, vectorization calculation, reducing judgments branch and some other optimization methods, we investigated the effects of different optimization on different platforms and suggested the possibility of realizing cross-platform portability. Experimental results showed that without counting the data transfer time, the speedup-ratio is 114.3~491.5 times for AMD HD5850 GPU to CPU version, and 1.01~1.86 times to CUDA version (with present GPU algorithm), and for NIVIDIA C2050 GPU, the speedup-ratio is 100.7~369.8 times to CPU and 0.95~1.58 times to CUDA. These well proved the validity and portability of the optimization methods proposed in this paper.
Language: 中文
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/16961
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
吴再龙,张云泉,龙国平,等. 基于OpenCL的图像重映射算法优化研究[J]. 科研信息化技术与应用,2013-01-01(1):57-66.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[吴再龙]'s Articles
[张云泉]'s Articles
[龙国平]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[吴再龙]‘s Articles
[张云泉]‘s Articles
[龙国平]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace