中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
一种基于轨迹大数据离线挖掘与在线实时监测的出租车异常轨迹检测算法
Alternative Title: An anomaly detection algorithm for taxis based on trajectory data mining and online real-time monitoring
Author: 韩博洋; 汪兆洋; 金蓓弘
Keyword: GPS轨迹 ; 异常轨迹检测 ; Pathlet方法 ; 时空数据挖掘
Source: 中国科学技术大学学报
Issued Date: 2016
Volume: 46, Issue:3, Pages:247-252
Indexed Type: CSCD
Department: 韩博洋, 中国科学院软件所, 软件工程技术研究开发中心, 北京 100190, 中国;汪兆洋, 中国科学院软件所, 软件工程技术研究开发中心, 北京 100190, 中国;金蓓弘, 中国科学院软件所, 软件工程技术研究开发中心, 北京 100190, 中国;
Abstract:

以防止出租车欺诈绕路为例,提出一种基于出租车GPS时空轨迹数据离线挖掘与在线实时检测相结合的异常轨迹检测算法,获得快速反馈实时检测的结果. 首先,将路网地图进行网格化切分并编号,用Pathlet方法优化常用的以GPS点组成的轨迹序列,并将轨迹通过匹配、补全等处理变换为Pathlet序 列. 然后,从大量出租车历史数据中,获得轨迹的Pathlet序列,并聚类得到起点与终点之间正常的K类轨迹. 当实时轨迹需要被检测时,便与K类正常轨迹进行匹配,只需计算两段Pathlet序列的编辑距离,并同时考量时间和空间两个维度设定合理阈值,判断是否抛 出异常. 最后,基于北京地区2011年3月到5月出租车GPS轨迹的真实数据集进行了大量实验,对比了相关工作,印证了所提出算法的有效性和高效性.

English Abstract:

Taking the prevention of taxi frauds as a motivating example,an anomalous spatio-temporal trajectory detection method that combines offline mining and online detection was proposed. A city roadmap was partitioned into a grid based on the longitude and latitude,using Pathlet sequences to express taxi trajectories instead of the traditional GPS sequences. Then,K-racial classesnormal sequences were clustered in the same origin-destination pair from history data sets. The incoming online GPS data was transformed into Pathlet sequences and matched with K-racial classesnormal sequences. The distance was computed and scored. Distance along with spatial and temporal factors together forms the criterion for determing anomalous taxi trajectories. Finally,based on the real taxi GPS data sets in Beijing area during March,2011 to May,2011,experimental results indicate that the proposed method is able to detect online anomalous trajectories efficiently and quickly.

Language: 中文
Citation statistics:
Content Type: 期刊论文
Version: 同行评议接收稿
URI: http://ir.iscas.ac.cn/handle/311060/17362
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
CCF_266 录用稿-韩博洋.pdf(3978KB)期刊论文作者接受稿限制开放 联系获取全文

Recommended Citation:
韩博洋,汪兆洋,金蓓弘. 一种基于轨迹大数据离线挖掘与在线实时监测的出租车异常轨迹检测算法[J]. 中国科学技术大学学报,2016-01-01,46(3):247-252.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[韩博洋]'s Articles
[汪兆洋]'s Articles
[金蓓弘]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[韩博洋]‘s Articles
[汪兆洋]‘s Articles
[金蓓弘]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2019  中国科学院软件研究所 - Feedback
Powered by CSpace