中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 软件所图书馆  > 期刊论文
Title:
面向医疗大数据的风险自适应的访问控制模型
Alternative Title: Risk-adaptive access control model for big data in healthcare
Author: 惠榛 ; 李昊 ; 张敏 ; 冯登国
Keyword: 风险访问控制 ; 大数据 ; 隐私 ; 自适应
Source: 通信学报
Issued Date: 2015
Volume: 36, Issue:12, Pages:190-199
Indexed Type: CSCD
Department: 惠榛, 中国科学院软件研究所, 北京 100080, 中国;李昊, 中国科学院软件研究所, 北京 100080, 中国;张敏, 中国科学院软件研究所, 北京 100080, 中国;冯登国, 中国科学院软件研究所, 北京 100080, 中国;
Abstract: 面对医疗大数据,策略制定者难以预测医生的访问需求,进而制定准确的访问控制策略。针对上述问题,提出一种基于风险的访问控制模型,能够适应性地调整医生 的访问能力,保护患者隐私。该模型通过分析医生的访问历史,使用信息熵和EM 算法量化医生侵犯隐私造成的风险。利用量化的风险,监测和控制对于医疗记录的过度访问以及特殊情况下的访问请求。实验结果表明,该模型是有效的,并且相比 于其他模型能更为准确地进行访问控制。
English Abstract: While dealing with the big data in healthcare, it was difficult for a policy maker to foresee what information a doctor may need, even to make an accurate access control policy. To deal with it, a risk-based access control model that regulates doctors access rights adaptively was proposed to protect patient privacy. This model analyzed the history of access, applies the EM algorithm and the information entropy technique to quantify the risk of privacy violation. Using the quantified risk, the model can detect and control the over-accessing and exceptional accessing of patients data. Experimental results show that this model is effective and more accurate than other models.
Language: 中文
Citation statistics:
Content Type: 期刊论文
URI: http://ir.iscas.ac.cn/handle/311060/17387
Appears in Collections:软件所图书馆_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
面向医疗大数据的风险自适应的访问控制模型.pdf(2458KB)----限制开放 联系获取全文

Recommended Citation:
惠榛,李昊,张敏,等. 面向医疗大数据的风险自适应的访问控制模型[J]. 通信学报,2015-01-01,36(12):190-199.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[惠榛]'s Articles
[李昊]'s Articles
[张敏]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[惠榛]‘s Articles
[李昊]‘s Articles
[张敏]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2020  中国科学院软件研究所 - Feedback
Powered by CSpace