中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 基础软件国家工程研究中心  > 学位论文
学科主题: 计算机应用::计算机仿真
题名:
列车通信网络容错机制研究及关键通信逻辑的仿真
作者: 朱涛
答辩日期: 2010-06-03
导师: 郭亮
专业: 计算机软件与理论
授予单位: 中国科学院研究生院
授予地点: 北京
学位: 硕士
关键词: TCN 容错性 仿真 可靠性
摘要: 本文是对列车通信网络(TCN)的容错性第一次比较系统、比较全面地进行深入的分析和总结,并基于此分析的基础上对列车通信网络(TCN)的容错性进行了评估并提出了相关的改进建议,例如MVB使用8比特的CRC校验码、使用全冗余、与其它列车总线标准结合使用等。除此而外,本文还对列车通信网络(TCN)的关键通信逻辑进行了仿真,并得出了相关的数据,为实际物理网络的开发提供了一定的实验性数据参考。 随着计算机通信和网络控制技术、嵌入式电子控制技术、工业控制技术以及故障诊断技术的快速发展,现代列车控制系统已从集中型的直接数字控制系统发展成为基于网络的分布式车载微机控制系统,并结合以现场控制总线技术,使得列车通信在互操作性、智能化、实时性、可靠性方面性能不断提升,从而出现了各种应用于列车网络通信方面的技术,如基于CAN总线的列车通信,基于LonWorks的列车通信,基于工业以太网的列车通信等,但是由于上述几种技术的普适性,在列车通信对强实时性、高可靠性方面不能够完全满足,从而出现了专门用于列车通信的TCN网络技术。伴随着TCN标准不断完善,特别是2007年发布的IEC61375标准族和即将发布的最新版(第三版)的IEC61375,对列车网络的通信细节有了明确的规定,使得列车通信领域在建立一个完整的、高可靠性、强实时性、良好互操作性的列车通信网络方面有了长足的进步。 由于列车通信的特殊性,高可靠性永远是第一位的要求。要保证系统的可靠性,就要求列车通信在特殊应用场景下能够安全地工作,也即相应的部件能够在容错性方面有相应的保证机制。本文很重要的一部分内容即是对TCN容错机制的研究,并结合可靠性工程理论对相应的容错机制进行可靠性分析。 除此以外,由于TCN通信网络技术在列车通信网络技术方案中不断上升的市场占有率,相关的网络实现与部署也变的愈发重要。在现代的通信网络的开发过程中,使用仿真系统对通信网络进行提前的建模仿真,对标准中规定和说明的核心逻辑进行验证,对系统的相关属性进行实验仿真测试,得出相应的仿真数据,如影响网络通信性能的主要因素及各个因素与性能的关系,网络通信实时性的关键因素及可能的瓶颈等,从而为实际的物理网络的开发和部署提供可靠的数据参考,以避免物理网络开发中出现的可能问题,降低开发成本,提高开发效率。这种仿真先行的开发模式已经非常流行,特别是对一些网络复杂度比较高、通信逻辑比较复杂的通信网络。 显然TCN正是一种网络复杂度高、通信逻辑复杂的网络通信系统,本文使用仿真准确度高且得到理论界和工程界广泛认可的OPNET作为仿真工具,来对TCN的两个关键的通信逻辑进行仿真,即MVB的主权转移和WTB的初运行逻辑。 基于此,本文首先介绍了文中所涉及的相关理论基础,主要包括网络通信的容错机制、可靠性工程理论、网络仿真系统的原理并对OPNET进行了简要说明。此处的说明贯穿整个文章来作为相关的理论基础和相关的分析工具。 接着,根据TCN标准族的组成,分别对构成TCN的两个总线协议进行说明。按照顺序,首先对MVB总线进行了说明,包括其通信过程,MVB的主权转移逻辑,主要通信协议层的说明,最后对MVB的容错机制进行了详细的分析与研究,特别是对传输的完整性和设备冗余进行了详细的说明与分析。其次对WTB总线进行了研究,与MVB的类似,首先说明了其通信过程,及各个主要通信协议层,与MVB相似的予以简要说明,与MVB不同的,如WTB网关节点进行了详细的说明。最后说明了WTB的容错机制,同样类似于MVB,简化相似部分,主要说明了WTB特有的容错机制,如WTB网关节点的容错性等。 基于对MVB和WTB总线的相关说明及对其容错性的研究,在第五章,本文站在TCN作为一个完整的通信协议的角度总结了TCN的容错机制,并且结合通用的网络通信容错机制与TCN通信协议的特殊性提出了几点关于容错性的建议。 鉴于网络仿真对于实际的物理网络开发的重要性,在研究完TCN的主要容错机制后,本文开始对TCN中的两个关键通信逻辑进行了建模与仿真,使用OPNET作为仿真工具,设定相关的网络仿真参数,得出相应的帧时延等关键属性,并且验证了相关的关键数据流与通信逻辑。此处的关键逻辑选取的是MVB的主权转移和WTB的初运行,二者在TCN的通信逻辑中具有重要的作用。 最后,结合对TCN通信网络容错性的研究与分析,与对TCN关键逻辑的仿真,对整个文章进行了总结,并结合工程与理论上的研究方向对TCN的未来及相关的技术进行了展望。
英文摘要: Fault tolerance of TCN is firstly researched and analyzed systematically and fully in this paper. And based on the analysis of TCN’s fault tolerance, we evaluate the mechanism of TCN’s fault tolerance and propose some new approaches to improve TCN’s fault tolerance, e.g using 8-bit CRC, fully-redundancy and combining with other train communication solutions. Besides, simulation to the key communication logic of TCN is done and the corresponding data are collected, which can be a good reference to the physical network development. With the rapid technical development of computer communication, network control, embedded electronic control, industrial control and fault diagnosis, the modern train system has been developed from the central digital control system to distributed computer system which is based on networked control system on board, which brings a great improvement on interoperation, intelligence, real time, reliability of train communication. Thus there turns out a lot of train communication solutions, e.g. train communication based on CAN bus, train communication based on LonWorks, train communication based on industrial Ethernet, etc. But CAN bus, LonWorks and industrial Ethernet are general-purpose fieldbus solutions and can be used in many areas, and they can’t meet the requirements of strong real time and high reliability placed by train communication to some degree. Therefore train communication specific fieldbus solution TCN turns up finally.With the improvement of the TCN standard, especially IEC61375 which was published in 2007 and the latest one which will be published recently, TCN places clear and complete requirements on train communication details. Therefore, it proceeds a great step to build a complete, high reliability, strong real time and interoperation fieldbus. Since the characteristic of train communication, high reliability is always the most important. To ensure train communication’s high reliability, we need to ensure train communication can function correctly in some tough environments and scenarios, i.e. to make the components of train communication have a good mechanism of fault-tolerance. One of the most important contents of the paper is focusing on the study of TCN’s fault-tolerance, and analyzing the reliability of TCN based on reliability engineering theory. Besides, since TCN becomes more and more popular in train communication area and gains bigger and bigger marketing share, TCN related development and deployment have become more and more important. In the modern communication network’s development process, to model and simulate communication network using simulation system in advance to get the simulation data, such as the main factors which have impact on train communication performance and the relation between these factors and the communication performance, and the key factor of train communication real time, possible bottlenecks etc., to provide a set of reliable experiments data reference to the real physical network developing, to avoid the possible issues in the real physical network developing process and lower the development costs and boost the development efficiency. This kind of network development pattern has become very popular, especially to the networks which has a very complex network topology or communication logic. And obviously TCN is a network with very complex network topology and communication logic. In this paper, we will use the popular simulation system OPNET, which gains a great reputation in engineering and theory areas for its high simulation accuracy, to model and simulate the two key communication logic of TCN, i.e. mastership transfer of MVB and inauguration of WTB. Based on the above analysis, this paper will introduce the related theory foundation, including network communication fault-tolerance mechanisms, reliability engineering theory, network simulation system principle and simulation tool OPNET. This part will be the foundation of the whole paper and will be used as the analysis tools. Then, we will discuss the two main components of TCN detailedly, according to the TCN standard cluster. Orderly, MVB is presented at first, including the communication process, mastership transfer logic of MVB, each communication layer based on the protocol, and MVB’s fault-tolerance schemes, especially the communication integrity and device redundancy. Then we present WTB detailedly. Similar with MVB, the communication process and each protocol layer of WTB are presented, in which the same parts with MVB are presented briefly and the difference is presented detailedly. Then the same route goes to WTB’s fault-tolerance analysis. Based on the discussion and research on MVB/WTB and related fault-tolerace mechanisms, the paper presents TCN’s fault-tolerance mechanisms in a high degree and in the standpoint which TCN is treated as a whole communication protocol. Several new fault-tolerance approaches are proposed at last based on the network fault-tolerance mechanisms and characters of TCN. For the great importance of network simulation to the real physical network development, after the research of TCN’s main fault-tolerance mechanisms, this paper starts to focus on the modeling and simulation of TCN’s key communication logics using OPNET as the simulation tool to gather the key properties of TCN, like frame delay by setting the related network simulation parameters, and verify the related key data flow and communication logics of TCN. The key communication logics here are mastership transfer logic of MVB and inauguration of WTB, which both play a great role in TCN’s communication logics. At last, we summarize the whole paper based on the analysis and research of TCN’s fault-tolerance mechanisms, and the modeling and simulation to the key communication logics. And we also discuss the future of TCN and related technologies based on the research direction of engineering and theory in this area.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.iscas.ac.cn/handle/311060/2333
Appears in Collections:基础软件国家工程研究中心_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
列车通信网络容错机制研究及关键通信逻辑的仿真-定稿-final2.pdf(1174KB)----限制开放 联系获取全文

Recommended Citation:
朱涛. 列车通信网络容错机制研究及关键通信逻辑的仿真[D]. 北京. 中国科学院研究生院. 2010-06-03.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[朱涛]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[朱涛]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院软件研究所 - Feedback
Powered by CSpace