中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 计算机科学国家重点实验室  > 期刊论文
题名:
基于向量空间模型的有导词义消歧
其他题名: supervised word sense disambiguation based on vector space model
作者: 鲁松 ; 白硕 ; 黄雄 ; 张健
关键词: 词义消歧 ; 向量空间模型 ; 义项矩阵 ; 上下文位置权重 ; 有导机器学习
刊名: 计算机研究与发展
发表日期: 2001
卷: 38, 期:6, 页:662-667
部门归属: 计算机科学国家重点实验室
摘要: 词义消歧一直是自然语言理解中的一个关键问题,该问题解决的好坏直接关系到自然语言处理中诸多应用问题的效果优劣.由于自然语言知识表示的困难,在手工规则的词义消歧难以达到理想效果的情况下,各种有导机器学习方法被应用于词义消歧任务中.借鉴前人的成果引入信息检索领域中向量空间模型文档词语权重计算技术来解决多义词义项的知识表示问题,并提出了上下文位置权重的计算方法,给出了一种基于向量空间模型的词义消歧有导机器学习方法.该方法将多义词的义项和上下文分别映射到向量空间中,通过计算多义词上下文向量与义项向量的距离,采用k-NN(k=1)方法来确定上下文向量的义项分类.在9个汉语高频多义词的开放和封闭测试中均取得了突出的成绩(封闭测试平均正确率为96.31% ,开放测试平均正确率为92.98%),验证了该方法的有效性.
语种: 中文
内容类型: 期刊论文
URI标识: http://ir.iscas.ac.cn/handle/311060/3158
Appears in Collections:计算机科学国家重点实验室 _期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
20013806662.pdf(351KB)----限制开放-- 联系获取全文

Recommended Citation:
鲁松,白硕,黄雄,等. 基于向量空间模型的有导词义消歧[J]. 计算机研究与发展,2001-01-01,38(6):662-667.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[鲁松]'s Articles
[白硕]'s Articles
[黄雄]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[鲁松]‘s Articles
[白硕]‘s Articles
[黄雄]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院软件研究所 - Feedback
Powered by CSpace