中国科学院软件研究所机构知识库
Advanced  
ISCAS OpenIR  > 中科院软件所  > 中科院软件所
题名:
灾情预测和财产损失评估模型的研究和实现
作者: 钱育(左石右羡)
答辩日期: 2004
专业: 计算机软件与理论
授予单位: 中国科学院软件研究所
授予地点: 中国科学院软件研究所
学位: 博士
关键词: 防灾减损 ; 灾情预测 ; 损失评估 ; 反向传播(BP)神经网络 ; 径向基函数(RBF)神经网络
其他题名: Study and Implement of Disaster Prognostication Model and Property Loss Evaluation Model
摘要: 为了防止自然灾害和减少自然灾害对财产保险造成的损失,需要根据当前和未来财产保险防灾减损的需要,建立科学的灾情预测模型和财产损失评估模型。综合利用遥感、地理信息系统和全球定位系统集成方法,获取不同模型需要的参数,解决财产保险防灾减损中的关键技术与方法。进行有效的灾害信息收集,并利用这些信息进行灾情预测和损失评估,指导保险公司防灾减损工作的顺利进行。基于有效指导保险公司防灾减损工作顺利进行的目的,文章总结了灾情预测和财产损失评估的研究现状,分析已有的预测和评估方法,提出了基于DEM(Digital Elevation Model)的灾情预测方法和基于RBF(Radial Basis Function)神经网络的财产损失评估方法。灾情预测方法分为灾情初步预测和灾情修正两个部分,灾情初步预测部分依据高程数据建立DEM模型,综合考虑和分析影响灾情的若干因素,得到淹没的区域、深度和持续时间。灾情修正部分采用神经网络模型,以历史灾情情况为样本进行训练,对前面计算的结果进行修正,从而得到理想的结果,使得预测精度进一步提高;财产损失评估方法以保险标的为评估对象,有效利用收集到的信息,运用RBF神经网络方法建立模型并进行财产损失评估。设计并实现了灾情预测模型和财产保险损失评估模型,集成到财产保险防灾减损原型系统中,并在深圳进行示范应用,取得了良好的效果。
英文摘要: In order to prevent natural disasters and reduce the loss of property insurance, it is necessary to set up a scientific disaster prognostication model and a property loss evaluation model according to the need of current and future disaster prevention and loss reduction of property insurance. The technique of disaster prevention and loss reduction of property insurance is an integration of remote sensing, geographic information system and global position system. It collects effective disaster information, according to which we perform disaster prediction and loss evaluation, and instruct insurance companies to do the work of disaster prevention and loss reduction. Our goal is to give effective consultation to insurance companies in their work of disaster prevention and loss reduction. This thesis reviews the current research status of disaster prognostication and property loss evaluation. It analyzes the existing prognostication and evaluation methods, and proposes a disaster prognostication method based on DEM (Digital Elevation Model), and a property loss evaluation method based on RBF (Radial Basis Function) neural network. The disaster prognostication method consists of disaster primary prediction part and disaster correction part. The primary prediction part considers and analyzes various factors which affect the situation of the disaster, to get the flooding area, depth and duration. We use neural network model to implement correction part, train it using the samples of history disaster data, and correct the computing result of the former, then get the ideal result, which improves the prognostication precision. The property loss evaluation method targets insurance item as evaluation object. By using the collected data effectively, it builds a model using the method of RBF neural network, and this model is used to evaluate the property loss. This project designs and implements the disaster prognostication model and the property loss evaluation model, and integrates them into a prototype system of disaster prevention and loss reduction of property insurance. The models were applied in Shenzhen as a test, and showed a satisfactory result.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.iscas.ac.cn/handle/311060/6376
Appears in Collections:中科院软件所

Files in This Item:
File Name/ File Size Content Type Version Access License
LW014057.pdf(2713KB)----限制开放-- 联系获取全文

Recommended Citation:
钱育(左石右羡). 灾情预测和财产损失评估模型的研究和实现[D]. 中国科学院软件研究所. 中国科学院软件研究所. 2004-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[钱育(左石右羡)]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[钱育(左石右羡)]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院软件研究所 - Feedback
Powered by CSpace