Register
 ALL Title Author Keyword Sponsors Type Publication date Submitted Time Subject Conference Name Source Categories KOS Subject Advisor ORCID Advanced
 ISCAS OpenIR  > 中科院软件所  > 中科院软件所
 Title: 可盖相对计算度有关问题研究 Author: 汪德嘉 Issued Date: 1995 Major: 数理逻辑(mathematical logic) Degree Grantor: 中国科学院软件研究所 Place of Degree Grantor: 中国科学院软件研究所 Degree Level: 博士 Keyword: 可盖递归枚举度 ; 弱真值表 ; 无向可盖度 ; 无向可杯度 ; gap/cogap构造方法 Alternative Title: Some Tesults about Cappable Degree Abstract: 本文研究可盖递归枚举度（cappable r.e. degree)的有关问题。我们首先证明不存在弱真值表（wtt）可盖度的一致性构造，即不存在递归函数f和递归泛函#PHI#使得对任意e #belongs to (is member of ) the set# #omega#, w_f(e)=[#PHI#](We),deg_wtt(W_f(e))为弱真值表可盖度，且W_e非递归蕴涵W_f(e)非递归。在T.A.Slaman的问题集中，Lempp提出了一个与一致性构造有关的猜想：对任意递归枚举度a和b,若a #not<=# b则在区间R(<=a)-R(<=b)中存在可盖度c（即c<=a且c#not<=#b）。我们考虑Lempp猜想成立的条件，并且证明了若加上条件b∈NB（NB为其下无极小对的度集合），则Lemmp猜想成立；进一步，如果a#not<=#b, b∈M，那么在区间R(<=a)-R(<=b)中存在可盖度。最后我们研究可盖度在R中的分布情况。递归枚举度a称为无向可盖度，若O English Abstract: In this paper, we are doing research on some problems about cappable degrees. Firstly, we have shown that there does not exist uniform construction of wtt-cappable degree, that is, there is no recursive function f and p.r. functional #PHI# such that for any e #belongs to (is member of ) the set# #omega#, w_f(e)=[#PHI#](We),deg_wtt(W_f(e)) is a wtt-cappable degree and W_e nonrecursive implies W_f(e) nonrecursive. In T.A.Slaman's "Questions in Recursion Theory", Lempp communicates a conjecture which is also related to the uniform construction of cappable degree: For any r.e. degree a and b, if a #not<=# b them=n there exists a cappable degree c in R(<=a)-R(<=b). We consider the positive aspects of Lempp's conjec-ture under some conditions, and show that if we add condition b∈NB (where NB=(｛a>O｜a does not bound a minimal pair｝), then the conjecture of Lempp is true. Furthermore, if a#not<=#b and b∈M, then there also exists a cappable degree in R(<=a)-R(<=b). Lastly, we consider the distribution of cappable degree in R.A recursively enumerable degree a is undirectly cappable if O Language: 中文 Content Type: 学位论文 URI: http://ir.iscas.ac.cn/handle/311060/7452 Appears in Collections: 中科院软件所

 Files in This Item:
File Name/ File Size Content Type Version Access License
N91062.pdf（1693KB）----限制开放-- 联系获取全文

 Recommended Citation: 汪德嘉. 可盖相对计算度有关问题研究[D]. 中国科学院软件研究所. 中国科学院软件研究所. 1995-01-01.
 Service Recommend this item Sava as my favorate item Show this item's statistics Export Endnote File Google Scholar Similar articles in Google Scholar [汪德嘉]'s Articles CSDL cross search Similar articles in CSDL Cross Search [汪德嘉]‘s Articles Related Copyright Policies Null Social Bookmarking

 您对该条目有什么异议，请填写以下表单，管理员会尽快联系您。 `内 容：` Email： * 单位： 验证码： 刷新
 您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。 `标 题：` * `内 容：` Email： * 验证码： 刷新